Shortcuts
Please wait while page loads.
LiberoBanner . Default .
PageMenu- Main Menu-
Page content

Catalogue Display

Introduction to Finite Element Analysis : Formulation, Verification and Validation.

Introduction to Finite Element Analysis : Formulation, Verification and Validation.
Item Information
Barcode Shelf Location Collection Volume Ref. Branch Status Due Date Res.
10022814 Access this eBook online Ebook for Engineering   GUtech Library . . Available .  
. Catalogue Record 9500 ItemInfo Beginning of record . Catalogue Record 9500 ItemInfo Top of page .
Catalogue Information
Field name Details
ISBN 9781119993827
9780470977286
Author Szabo, Barna
Title Introduction to Finite Element Analysis : : Formulation, Verification and Validation.
1st ed.
Description 1 online resource (384 pages)
Contents Introduction to Finite Element Analysis -- Contents -- About the Authors -- Series Preface -- Preface -- 1 Introduction -- 1.1 Numerical simulation -- 1.1.1 Conceptualization -- 1.1.2 Validation -- 1.1.3 Discretization -- 1.1.4 Verification -- 1.1.5 Decision-making -- 1.2 Why is numerical accuracy important? -- 1.2.1 Application of design rules -- 1.2.2 Formulation of design rules -- 1.3 Chapter summary -- 2 An outline of the finite element method -- 2.1 Mathematical models in one dimension -- 2.1.1 The elastic bar -- 2.1.2 Conceptualization -- 2.1.3 Validation -- 2.1.4 The scalar elliptic boundary value problem in one dimension -- 2.2 Approximate solution -- 2.2.1 Basis functions -- 2.3 Generalized formulation in one dimension -- 2.3.1 Essential boundary conditions -- 2.3.2 Neumann boundary conditions -- 2.3.3 Robin boundary conditions -- 2.4 Finite element approximations -- 2.4.1 Error measures and norms -- 2.4.2 The error of approximation in the energy norm -- 2.5 FEM in one dimension -- 2.5.1 The standard element2.5.1 The standard element -- 2.5.2 The standard polynomial space -- 2.5.3 Finite element spaces -- 2.5.4 Computation of the coefficient matrices -- 2.5.5 Computation of the right hand side vector -- 2.5.6 Assembly -- 2.5.7 Treatment of the essential boundary conditions -- 2.5.8 Solution -- 2.5.9 Post-solution operations -- 2.6 Properties of the generalized formulation -- 2.6.1 Uniqueness -- 2.6.2 Potential energy -- 2.6.3 Error in the energy norm -- 2.6.4 Continuity -- 2.6.5 Convergence in the energy norm -- 2.7 Error estimation based on extrapolation -- 2.7.1 The root-mean-square measure of stress -- 2.8 Extraction methods -- 2.9 Laboratory exercises -- 2.10 Chapter summary -- 3 Formulation of mathematical models -- 3.1 Notation -- 3.2 Heat conduction -- 3.2.1 The differential equation -- 3.2.2 Boundary and initial conditions.
3.2.3 Symmetry, antisymmetry and periodicity -- 3.2.4 Dimensional reduction -- 3.3 The scalar elliptic boundary value problem -- 3.4 Linear elasticity -- 3.4.1 The Navier equations -- 3.4.2 Boundary and initial conditions -- 3.4.3 Symmetry, antisymmetry and periodicity -- 3.4.4 Dimensional reduction -- 3.5 Incompressible elastic materials -- 3.6 Stokes' flow -- 3.7 The hierarchic view of mathematical models -- 3.8 Chapter summary -- 4 Generalized formulations -- 4.1 The scalar elliptic problem -- 4.1.1 Continuity -- 4.1.2 Existence -- 4.1.3 Approximation by the finite element method -- 4.2 The principle of virtual work -- 4.3 Elastostatic problems -- 4.3.1 Uniqueness -- 4.3.2 The principle of minimum potential energy -- 4.4 Elastodynamic models -- 4.4.1 Undamped free vibration -- 4.5 Incompressible materials -- 4.5.1 The saddle point problem -- 4.5.2 Poisson's ratio locking -- 4.5.3 Solvability -- 4.6 Chapter summary -- 5 Finite element spaces -- 5.1 Standard elements in two dimensions -- 5.2 Standard polynomial spaces -- 5.2.1 Trunk spaces -- 5.2.2 Product spaces -- 5.3 Shape functions -- 5.3.1 Lagrange shape functions -- 5.3.2 Hierarchic shape functions -- 5.4 Mapping functions in two dimensions -- 5.4.1 Isoparametric mapping -- 5.4.2 Mapping by the blending function method -- 5.4.3 Mapping of high-order elements -- 5.4.4 Rigid body rotations -- 5.5 Elements in three dimensions -- 5.6 Integration and differentiation -- 5.6.1 Volume and area integrals -- 5.6.2 Surface and contour integrals -- 5.6.3 Differentiation -- 5.7 Stiffness matrices and load vectors -- 5.7.1 Stiffness matrices -- 5.7.2 Load vectors -- 5.8 Chapter summary -- 6 Regularity and rates of convergence -- 6.1 Regularity -- 6.2 Classification -- 6.3 The neighborhood of singular points -- 6.3.1 The Laplace equation -- 6.3.2 The Navier equations -- 6.3.3 Material interfaces.
6.3.4 Forcing functions acting on boundaries -- 6.3.5 Strong and weak singular points -- 6.4 Rates of convergence -- 6.4.1 The choice of finite element spaces -- 6.4.2 Uses of a priori information -- 6.4.3 A posteriori error estimation in the energy norm -- 6.4.4 Adaptive and feedback methods -- 6.5 Chapter summary -- 7 Computation and verification of data -- 7.1 Computation of the solution and its first derivatives -- 7.2 Nodal forces -- 7.2.1 Nodal forces in the h-version -- 7.2.2 Nodal forces in the p-version -- 7.2.3 Nodal forces and stress resultants -- 7.3 Verification of computed data -- 7.4 Flux and stress intensity factors -- 7.4.1 The Laplace equation -- 7.4.2 Planar elasticity -- 7.5 Chapter summary -- 8 What should be computed and why? -- 8.1 Basic assumptions -- 8.2 Conceptualization: drivers of damage accumulation -- 8.3 Classical models of metal fatigue -- 8.3.1 Models of damage accumulation -- 8.3.2 Notch sensitivity -- 8.3.3 The theory of critical distances -- 8.4 Linear elastic fracture mechanics -- 8.5 On the existence of a critical distance -- 8.6 Driving forces for damage accumulation -- 8.7 Cycle counting -- 8.8 Validation -- 8.9 Chapter summary -- 9 Beams, plates and shells -- 9.1 Beams -- 9.1.1 The Timoshenko beam -- 9.1.2 The Bernoulli-Euler beam -- 9.2 Plates -- 9.2.1 The Reissner-Mindlin plate -- 9.2.2 The Kirchhoff plate -- 9.2.3 Enforcement of continuity: the HCT element -- 9.3 Shells -- 9.3.1 Hierarchic "thin-solid" models -- 9.4 The Oak Ridge experiments -- 9.4.1 Description -- 9.4.2 Conceptualization -- 9.4.3 Verification -- 9.4.4 Validation: comparison of predicted and observed data -- 9.4.5 Discussion -- 9.5 Chapter summary -- 10 Nonlinear models -- 10.1 Heat conduction -- 10.1.1 Radiation -- 10.1.2 Nonlinear material properties -- 10.2 Solid mechanics -- 10.2.1 Large strain and rotation.
10.2.2 Structural stability and stress stiffening -- 10.2.3 Plasticity -- 10.2.4 Mechanical contact -- 10.3 Chapter summary -- A Definitions -- A.1 Norms and seminorms -- A.2 Normed linear spaces -- A.3 Linear functionals -- A.4 Bilinear forms -- A.5 Convergence -- A.6 Legendre polynomials -- A.7 Analytic functions -- A.7.1 Analytic functions in R2 -- A.7.2 Analytic curves in R2 -- A.8 The Schwarz inequality for integrals -- B Numerical quadrature -- B.1 Gaussian quadrature -- B.2 Gauss-Lobatto quadrature -- C Properties of the stress tensor -- C.1 The traction vector -- C.2 Principal stresses -- C.3 Transformation of vectors -- C.4 Transformation of stresses -- D Computation of stress intensity factors -- D.1 The contour integral method -- D.2 The energy release rate -- D.2.1 Symmetric (Mode I) loading -- D.2.2 Antisymmetric (Mode II) loading -- D.2.3 Combined (Mode I and Mode II) loading -- D.2.4 Computation by the stiffness derivative method -- E Saint-Venant's principle -- E.1 Green's function for the Laplace equation -- E.2 Model problem -- F Solutions for selected exercises -- Bibliography -- Index.
Subject Finite element method
Numerical analysis
Other Author Electronic books.
Other name(s) Babuška, Ivo
Szabo, Barna
Babuska, Professor of Aerospace Engineering and Engineering Science and Professor of Mathematics Ivo
Ebook Link Find Ebook Central in MyGUtech
Links to Related Works
Subject References:
Authors:
Catalogue Information 9500 Beginning of record . Catalogue Information 9500 Top of page .

Reviews


This item has not been rated.    Add a Review and/or Rating9500