Shortcuts
Please wait while page loads.
LiberoBanner . Default .
PageMenu- Main Menu-
Page content

Catalogue Display

Sulfuric Acid Manufacture : Analysis, Control and Optimization.

Sulfuric Acid Manufacture : Analysis, Control and Optimization.
Item Information
Barcode Shelf Location Collection Volume Ref. Branch Status Due Date Res.
10036438
Engineering   GUtech Library . . Available .  
. Catalogue Record 16130 ItemInfo Beginning of record . Catalogue Record 16130 ItemInfo Top of page .
Catalogue Information
Field name Details
ISBN 9780080982267
-- 9780080982205
Author King, Matt
Title Sulfuric Acid Manufacture : : Analysis, Control and Optimization.
2nd ed.
Description 1 online resource (528 pages)
Contents Front Cover -- Sulfuric Acid Manufacture: Analysis, Control, and Optimization -- Copyright -- Contents -- Preface -- Chapter 1: Overview -- 1.1. Catalytic oxidation of SO2 to SO3 -- 1.1.1. Catalyst -- 1.1.2. Feed gas drying -- 1.2. H2SO4 production -- 1.3. Industrial flowsheet -- 1.4. Sulfur burning -- 1.5. Metallurgical offgas -- 1.6. Spent acid regeneration -- 1.7. Sulfuric acid product -- 1.8. Recent developments -- 1.9. Alternative processes -- 1.9.1. Wet gas sulfuric acid -- 1.9.2. Sulfacid® -- 1.10. Summary -- References -- Suggested reading -- Chapter 2: Production and consumption -- 2.1. Uses -- 2.2. Acid plant locations -- 2.3. Price -- 2.4. Summary -- References -- Suggested reading -- Chapter 3: Sulfur burning -- 3.1. Objectives -- 3.2. Sulfur -- 3.2.1. Viscosity -- 3.3. Molten sulfur delivery -- 3.3.1. Sulfur pumps and pipes -- 3.4. Sulfur atomizers and sulfur burning furnaces -- 3.4.1. Sulfur atomizers -- 3.4.2. Dried air supply -- 3.4.3. Main blower -- 3.4.4. Furnace -- 3.5. Product gas -- 3.5.1. Gas destination -- 3.5.2. Composition and temperature control -- 3.5.3. Target gas composition -- 3.5.4. Target gas temperature -- 3.6. Heat recovery boiler -- 3.7. Summary -- References -- Suggested reading -- Chapter 4: Metallurgical offgas cooling and cleaning -- 4.1. Initial and final SO2 concentrations -- 4.2. Initial and final dust concentrations -- 4.3. Offgas cooling and heat recovery -- 4.4. Electrostatic collection of dust -- 4.5. Water scrubbing (Tables4.5 and 4.6) -- 4.5.1. Gas temperature after scrubbing -- 4.5.2. Impure scrubbing liquid -- 4.5.3. Mercury removal (Outotec, 2011 -- Schlesinger et al., 2011) -- 4.5.4. Fluorine removal -- 4.6. H2O(g) removal from scrubber exit gas (Tables4.5 and 4.6) -- 4.7. Summary -- References -- Suggested reading -- Chapter 5: Regeneration of spent sulfuric acid -- 5.1. Spent acid compositions.
5.2. Spent acid handling -- 5.3. Decomposition -- 5.3.1. Other reactions -- 5.3.2. Spent acid spraying -- 5.4. Decomposition furnace product -- 5.5. Optimum decomposition furnace operating conditions -- 5.5.1. Temperature effects -- 5.5.2. O2 content effects -- 5.6. Preparation of offgas for SO2 oxidation and H2SO4 making -- 5.6.1. Gas composition -- 5.7. Summary -- References -- Suggested Reading -- Chapter 6: Dehydrating air and gases with strong sulfuric acid -- 6.1. Chapter objectives -- 6.1.1. H2O(g) before gas dehydration -- 6.2. Dehydration with strong sulfuric acid -- 6.2.1. H2O(g) concentration after gas dehydration -- 6.2.2. Choice of dehydration acid strength -- 6.3. Dehydration reaction mechanism -- 6.3.1. Maximizing dehydration rate -- 6.4. Residence times -- 6.5. Recent advances -- 6.6. Summary -- References -- Chapter 7: Catalytic oxidation of SO2 to SO3* -- 7.1. Objectives -- 7.2. Industrial SO2 oxidation -- 7.2.1. Source of O2 -- 7.3. Catalyst necessity -- 7.3.1. Temperature effect -- 7.4. SO2 oxidation ``heatup´´ path (Chapter 11) -- 7.5. Industrial multicatalyst bed SO2 oxidation (Tables 7.2-7.7) -- 7.5.1. Overall multicatalyst bed results -- 7.5.2. Double contact acidmaking -- 7.6. Industrial operation (Table7.2) -- 7.6.1. Startup -- 7.6.2. Steady operation -- 7.6.3. Control -- 7.6.4. Shutdown -- 7.7. Recent advances -- 7.8. Summary -- References -- Chapter 8: SO2 oxidation catalyst and catalyst beds -- 8.1. Catalytic reactions -- 8.1.1. Maximizing catalyst activity -- 8.1.2. Deactivation and reactivation -- 8.2. Maximum and minimum catalyst operating temperatures -- 8.3. Composition and manufacture -- 8.3.1. Manufacture -- 8.3.2. Price -- 8.3.3. Installation and plant startup -- 8.3.4. Chemical change and melting -- 8.4. Choice of size and shape -- 8.5. Catalyst bed thickness and diameter -- 8.5.1. Bed thicknesses.
8.5.2. Bed diameters -- 8.6. Gas residence times -- 8.7. Catalyst bed temperatures -- 8.8. Catalyst bed maintenance -- 8.9. Summary -- References -- Suggested reading -- Chapter 9: Production of H2SO4(ℓ) from SO3(g) -- 9.1. Objectives -- 9.2. Sulfuric acid rather than water -- 9.3. Absorption reaction mechanism -- 9.4. Industrial H2SO4 making (Tables9.3-9.8) -- 9.4.1. Residence times -- 9.4.2. Acid mist -- 9.5. Choice of input and output acid compositions -- 9.6. Acid temperature -- 9.6.1. Acid temperature control -- 9.7. Gas temperatures -- 9.8. Operation and control -- 9.8.1. Startup and shutdown -- 9.8.2. Steady operation and control -- 9.9. Double contact H2SO4 making (Tables 19.3 and 23.2) -- 9.9.1. Double contact advantages -- 9.10. Intermediate versus final H2SO4 making -- 9.11. Summary -- References -- Suggested reading -- Break -- Chapter 10: Oxidation of SO2 to SO3-Equilibrium curves -- 10.1. Catalytic oxidation -- 10.1.1. % SO2 oxidized defined -- 10.2. Equilibrium equation -- 10.3. KE as a function of temperature -- 10.4. KE in terms of % SO2 oxidized -- 10.5. Equilibrium % SO2 oxidized as a function of temperature -- 10.5.1. Equilibrium pressure effect -- 10.5.2. O2 in feed gas effect -- 10.5.3. SO2 in feed gas effect -- 10.6. Discussion -- 10.7. Summary -- 10.8. Problems -- Reference -- Chapter 11: SO2 oxidation heatup paths -- 11.1. Heatup paths -- 11.2. Objectives -- 11.3. Preparing a heatup path-The first point -- 11.4. Assumptions -- 11.5. A specific example -- 11.6. Calculation strategy -- 11.7. Input SO2, O2, and N2 quantities -- 11.8. Sulfur, oxygen, and nitrogen molar balances -- 11.8.1. Sulfur balance -- 11.8.2. Oxygen molar balance -- 11.8.3. Nitrogen molar balance -- 11.9. Enthalpy balance -- 11.9.1. Numerical enthalpy values -- 11.10. Calculating level L quantities -- 11.11. Matrix calculation.
11.12. Preparing a heatup path -- 11.12.1. Enthalpy equations in cells -- 11.12.2. The heatup path -- 11.13. Feed gas SO2 strength effect -- 11.13.1. SO2 strength summary -- 11.14. Feed gas temperature effect -- 11.15. Significance of heatup path position and slope -- 11.16. Summary -- 11.17. Problems -- Chapter 12: Maximum SO2 oxidation: Heatup path-equilibrium curve intercepts -- 12.1. Initial specifications -- 12.2. % SO2 oxidized-temperature points near an intercept -- 12.3. Discussion -- 12.4. Effect of feed gas temperature on intercept -- 12.5. Inadequate % SO2 oxidized in first catalyst bed -- 12.6. Effect of feed gas SO2 strength on intercept -- 12.7. Minor influence-Equilibrium gas pressure -- 12.8. Minor influence-O2 strength in feed gas -- 12.9. Minor influence-CO2 in feed gas1 -- 12.10. Catalyst degradation, SO2 strength, and feed gas temperature -- 12.10.1. Two catalyst layers -- 12.11. Maximum feed gas SO2 strength -- 12.12. Exit gas compositionintercept gas composition -- 12.13. Summary -- 12.14. Problems -- Chapter 13: Cooling first catalyst bed exit gas -- 13.1. First catalyst bed summary -- 13.1.1. Inefficient SO2 oxidation explained -- 13.2. Cooldown path -- 13.2.1. Second catalyst bed gas input temperature -- 13.2.2. Industrial gas cooling (Chapter 21) -- 13.3. Gas composition below equilibrium curve -- 13.4. Summary -- 13.5. Problem -- Hints -- Chapter 14: Second catalyst bed heatup path -- 14.1. Objectives -- 14.2. % SO2 oxidized redefined -- 14.3. Second catalyst bed heatup path -- 14.3.1. A heatup path point -- 14.3.2. Second catalyst bed difference -- 14.4. A specific heatup path question -- 14.5. Second catalyst bed input gas quantities -- 14.5.1. Input SO3, SO2, O2, and N2 equations -- 14.6. S, O, and N molar balances -- 14.7. Enthalpy balance -- 14.8. Calculating 760K (level L) quantities.
14.9. Matrix calculation and result -- 14.10. Preparing a heatup path -- 14.11. Discussion -- 14.12. Summary -- 14.13. Problem -- Hints -- Chapter 15: Maximum SO2 oxidation in a second catalyst bed -- 15.1. Second catalyst bed equilibrium curve equation -- 15.1.1. Proof of second catalyst bed applicability -- 15.2. Second catalyst bed intercept calculation -- 15.2.1. Intercept -- 15.2.2. Intercept gas composition -- 15.3. Two bed SO2 oxidation efficiency -- 15.4. Summary -- 15.5. Problems -- Hints -- Chapter 16: Third catalyst bed SO2 oxidation -- 16.1. 2-3 Cooldown path -- 16.2. Heatup path -- 16.3. Heatup path-equilibrium curve intercept -- 16.4. Graphical representation -- 16.5. Summary -- 16.6. Problems -- Hints -- Chapter 17: SO3 and CO2 in feed gas -- 17.1. SO3 -- 17.1.1. SO3 effect on equilibrium curve equation -- 17.1.2. Effect of SO3 on heatup path matrix -- 17.1.3. SO2 input equation changed by SO3 -- 17.1.4. Balances changed by SO3 -- 17.1.5. Effect of SO3 on heatup path-equilibrium curve intercepts -- 17.2. SO3 effects -- 17.3. CO2 -- 17.3.1. CO2 effect on heatup path matrix -- 17.4. CO2 effects -- 17.5. Summary -- 17.6. Problems -- Chapter 18: Three catalyst bed acid plant -- 18.1. Calculation specifications -- 18.2. Example calculation -- 18.3. Calculation results -- 18.4. Three catalyst bed graphs -- 18.4.1. Straight heatup paths -- 18.4.2. SO2 oxidation efficiency -- 18.5. Minor effect-SO3 in feed gas -- 18.5.1. Effect of SO3 on intercept % SO2 oxidized -- 18.6. Minor effect-CO2 in feed gas -- 18.7. Minor effect-Bed pressure -- 18.7.1. Validity of constant pressure specification -- 18.8. Minor effect-SO2 strength in feed gas -- 18.9. Minor effect-O2 strength in feed gas -- 18.10. Summary of minor effects -- 18.11. Major effect-Catalyst bed input gas temperatures -- 18.12. Discussion of book's assumptions.
18.12.1. Steady-state assumption.
Subject Sulfuric acid
Other Author Electronic books.
Other name(s) Moats, Michael
Davenport, William G.
King, Matt
Moats, Michael
Davenport, William G.
King, Matt
Moats, Michael
Davenport, William G.
Ebook Link https://ebookcentral.proquest.com/lib/gutech-ebooks/detail.action?docID=1192231
Links to Related Works
Subject References:
Authors:
Catalogue Information 16130 Beginning of record . Catalogue Information 16130 Top of page .

Reviews


This item has not been rated.    Add a Review and/or Rating16130